亚洲体育博彩平台
About Us

联系方式
Contact Us

总公司地址:
广东省梅州市梅县区大新城府前大道42-6号

电话:0753-2589289,2563289
传真:0753-2589189 

网站:http://ceyioa.thychic.com

邮箱:mzluyuan@vip.21cn.com,1265107068@qq.com

邮编:514700 


广州分公司地址:广东省广州市南沙区东涌镇天益南大街1号二楼

联系电话:020-84912609


武汉分公司地址:湖北省武汉市汉阳区郭茨口香格里都大厦B座1206


汕头办事处地址:广东省汕头市龙湖区天山路南方集团大厦十九楼


中国博彩平台
关于生物除磷的详解!
更新时间:2024/3/26 16:39:56 来源:环境监测实战 浏览次数:1011
< 返回文章列表

一、什么是生物除磷?

 

污水生物除磷就是人为创造生物超量除磷过程,实现可控的除磷效果。整个过程必须通过创造厌氧与好氧交替环节利用聚磷菌的作用来实现生物除磷过程。

 

根据霍尔米(Holmers) 提出的化学式,活性污泥的组成是C118 H170O51N17P,由此可知,C: N: P=46 : 8: 1。如果废水中N、P的含量低于此值,则需另行从外部投加,如等于此值,则在理论上应当是能够全部摄取而加以去除的。


   生物除磷利用一种被称为聚磷菌(也称为除磷菌、磷细菌等)的细菌在厌氧条件下能充分释放其细胞体内的聚合磷酸盐(该过程称为厌氧释磷),而在好氧条件下又能超过其生理需要从水中吸收磷 (该过程称为好氧吸磷),并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从系统中排出这种富磷污泥,达到从废水中除磷的效果。

 

二、生物除磷机理

聚磷菌也叫做摄磷菌、除磷菌,是传统活性污泥工艺中一类特殊的细菌,在好氧状态下能超量地将污水中的磷吸入体内,使体内的含磷量超过一般细菌体内的含磷量的数倍,这类细菌被广泛地用于生物除磷。

 

1、厌氧条件下释磷

在没有溶解氧或硝态氮存在的条件下,兼性细菌通过发酵作用将可溶性BOD5转化为低分子挥发性有机酸VFA。聚磷菌吸收这些发酵产物或来自原污水的VFA,并将其运送到细胞内,同化成胞内碳能源储存物质PHB,所需的能力来源于聚磷的水解以及细胞内糖的酵解,并导致磷酸盐的释放。

图片1.png

2、好氧条件下摄磷
  好氧条件下,聚磷菌的活力得到恢复,并以聚磷的形式存储超过生长所需的磷量,通过PHB的氧化代谢产生能量,用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式捕集存储,磷酸盐从水中被去除。


3、富磷污泥的排放
  产生的富磷污泥通过剩余污泥的形式排放,从而将磷去除。从能量角度来看,聚磷菌在无氧条件下释放磷获取能量以吸收废水中溶解性有机物,在好氧状态下降解吸收溶解性有机物获取能量以吸收磷
  除磷的关键是厌氧区的设置,聚磷菌能在短暂的厌氧条件下,由于非聚磷菌吸收低分子基质并快速同化和储存这些发酵产物,即厌氧区为聚磷菌提供了竞争优势。
  这样一来,能吸收大量磷的聚磷菌就能在处理系统中得到选择性增殖,并可通过排除高含磷量的剩余污泥达到除磷的目的。这种选择性增殖的另一好处是抑制了丝状菌的增殖,避免了产生沉淀性能较差的污泥的可能,因此厌氧/好氧生物除磷工艺一般不会出现污泥膨胀。

 

三、生物除磷的影响因素

生物除磷中通过聚磷菌在厌氧状态下释放磷,在好氧状态下过量地摄取磷。经过排放富磷剩余污泥而除磷,其影响聚磷菌代谢的影响因素包括:温度、pH值、厌氧池DO、厌氧池硝态氮、泥龄、CP比、RBCOD含量、糖原、HRT等。

 

1、温度

温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。

 

2、pH值

pH在6.5一8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当pH值低于6.5时,吸磷率急剧下降。当pH值突然降低,无论在好氧区还是厌氧区磷的浓度都急剧上升,pH降低的幅度越大释放量越大,这说明pH降低引起的磷释放不是聚磷菌本身对pH变化的生理生化反应,而是一种纯化学的“酸溶”效应,而且pH下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明pH下降引起的释放是破坏性的,无效的。pH升高时则出现磷的轻微吸收。

 

3、溶解氧

每毫克分子氧可消耗易生物降解的COD1.14mg,致使聚磷生物的生长受到抑制,难以达到预计的除磷效果。厌氧区要保持较低的溶解氧值以更利于厌氧菌的发酵产酸,进而使聚磷菌更好的释磷,另外,较少的溶解氧更有利予减少易降解有机质的消耗,进而使聚磷菌合成更多的PHB。

而在好氧区需要较多的溶解氧,以更利于聚磷菌分解储存的PHB类物质获得能量来吸收污水中的溶解性磷酸盐合成细胞聚磷。厌氧区的DO控制在0.3mg/l以下,好氧区DO控制在2mg/l以上,方可确保厌氧释磷好氧吸磷的顺利进行。

 

4、厌氧池硝态氮

厌氧区硝态氮存在消耗有机基质而抑制PAO对磷的释放,从而影响在好氧条件下聚磷菌对磷的吸收。另一方面,硝态氮的存在会被气单胞菌属利用作为电子受体进行反硝化,从而影响其以发酵中间产物作为电子受体进行发酵产酸,从而抑制PAO的释磷和摄磷能力及PHB的合成能力。每毫克硝酸盐氮可消耗易生物降解的COD2.86mg,致使厌氧释磷受到抑制,一般控制在1.5mg/l以下。

5、泥龄

由于生物除磷系统主要通过排出剩余污泥实现除磷,因此剩余污泥量的多少决定系统的除磷效果,而泥龄长短对剩余污泥的排放量和污泥对磷的摄取作用有直接的影响。污泥龄越小,除磷效果越佳。这是因为降低污泥龄,可增加剩余污泥的排放量及系统中的除磷量,从而削减二沉池出水中磷的含量。但对于同时除磷脱氮的生物处理工艺而言,为了满足硝化和反硝化细菌的生长要求,污泥龄往往控制得较大,这是除磷效果难以令人满意的原因。一般以除磷为目的的生物处理系统的泥龄控制在3.5~7d。

 

6、COD/TP

污水生物除磷工艺中,厌氧段有机基质的种类、含量及微生物所需营养物质与污水中含磷的比值是影响除磷效果的重要因素。不同的有机物为基质时,磷的厌氧释放和好氧摄取效果是不同的。分子量较小的易降解有机物(如挥发性脂肪酸类等)容易被聚磷菌利用,将其体内储存的多聚磷酸盐分解释放出磷,诱导磷释放的能力较强,而高分子难降解有机物诱导聚磷菌释磷能力就较差。厌氧阶段磷的释放越充分,好氧阶段磷的摄取量就越大。另外,聚磷菌在厌氧阶段释磷所产生的能量,主要用于其吸收低分子有机基质以作为厌氧条件下生存的基础。因此,进水中是否含有足够的有机质,是关系到聚磷菌能否在厌氧条件下顺利生存的重要因素。一般认为,进水中COD/TP要大于15,才能保证聚磷菌有足够的基质,从而获得理想的除磷效果。

 

7、RBCOD(易降解COD)

研究表明,当以乙酸、丙酸和甲酸等易降解碳源作为释磷基质时,磷的释放速率较大,其释放速率与基质的浓度无关,仅与活性污泥的浓度和微生物的组成有关,该类基质导致的磷的释放可用零级反应方程式表示。而其他类有机物要被聚磷菌利用,必须转化成此类小分子的易降解碳源,聚磷菌才能利用其代谢。

 

8、糖原

糖原是由多个葡萄糖组成的带分枝的大分子多糖,是胞内糖的贮存形式。如上图所示聚磷菌中糖原在好氧环境下形成,储存能量在厌氧环境下代谢形成为PHAs的合成的原料NADH并为聚磷菌代谢提供能量。所以在延迟曝气或者过氧化的情况下,除磷效果会很差,因为过量曝气会在好氧环境下消耗一部分聚磷菌体内的糖原,导致厌氧时形成PHAs的原料NADH的不足。

 

9、 HRT

对于运行良好的城市污水生物脱氮除磷系统来说,一般释磷和吸磷分别需要1.5~2.5小时和2.0~3.0小时。总体来看,似乎释磷过程更为重要一些,因此,我们对污水在厌氧段的停留时间更为关注,厌氧段的HRT太短,将不能保证磷的有效释放,而且污泥中的兼性酸化菌不能充分地将污水中的大分子有机物分解为可供聚磷菌摄取的低级脂肪酸,也会影响磷的释放;HRT太长,也没有必要,既增加基建投资和运行费用,还可能产生一些副作用。总之,释磷和吸磷是相互关联的两个过程,聚磷菌只有经过充分的厌氧释磷才能在好氧段更好地吸磷,也只有吸磷良好的聚磷菌才会在厌氧段超量地释磷,调控得当会形成一个良性循环。我厂在实际运行中摸索得到的数据是:厌氧段HRT为1小时15分~1小时45分,好氧段HRT为2小时~3小时10分较为合适。

 

10、回流比(R)

A/O工艺保证除磷效果的极为重要的一点,就是使系统污泥在曝气池中“携带”足够的溶解氧进入二沉池,其目的就是为了防止污泥在二沉池中因厌氧而释放磷,但如果不能快速排泥,二沉池内泥层太厚,再高的DO也无法保证污泥不厌氧释磷,因此,A/O系统的回流比不宜太低,应保持足够的回流比,尽快将二沉池内的污泥排出。但过高的回流比会增加回流系统和曝气系统的能源消耗,且会缩短污泥在曝气池内的实际停留时间,影响BOD5和P的去除效果。如何在保证快速排泥的前提下,尽量降低回流比,需在实际运行中反复摸索。一般认为,R在50~70%的范围内即可。

 

四、常见生物除磷工艺

 

废水生物除磷工艺一般由两个过程组成,即厌氧释磷和好氧摄磷两个过程。目前应用的生物除磷工艺主要有在生物除磷基本原理基础上发展起来的弗斯特利普(Phostrip)除磷工艺、厌氧-好氧(An/O) 工艺等除磷工艺。


1、弗斯特利普除磷工艺
  弗斯特利普(Phostrip)  除磷工艺是将生物除磷与化学除磷相结合的一种工艺,即在传统活性污泥过程的污泥回流管线上增设厌氧释磷池和混合反应池,采用生物和化学相结合的方法提高除磷效果。该工艺以生物除磷为主体,以化学除磷辅助去除厌氧释磷后的上清液中的磷酸盐,可以保证释磷后的污泥主要用于对进水中的磷酸盐进行吸收,因此可以达到更高的除磷效果。其工艺流程如图所示。

 

图片2.png

该工艺各设备单元的功能:


①含磷废水进入曝气池,同步进入曝气池的还有由除磷池回流的脱磷但含有聚磷菌的污泥。曝气池的功能是:使聚磷菌过量地摄取磷,去除有机物(BOD 或COD),还可能出现硝化作用。


②从曝气池流出的混合液(污泥含磷,废水已经除磷)进人沉淀池I,在这里进行泥水分离,含磷污泥沉淀,已除磷的上清液作为处理水而排放。


③含磷污泥进入除磷池,除磷池应保持厌氧状态,即DO≈0,NOㄨˉ≈0,含磷污泥在这里释放磷,并投加冲洗水,使磷充分释放,已释放磷的污泥沉于池底,并回流至曝气池,再次用于吸收废水中的磷。含磷上清液从上部流出进入混合池。


④含磷上清液进入混合池,同步向混合池投加石灰乳,经混合后进人搅拌反应池,使磷与石灰反应,形成磷酸钙[Ca3 (PO4)2]固体物质。此系用化学法除磷。


⑤沉淀池Ⅱ为混凝沉淀池,经过混凝反应形成的磷酸钙固体物质在这里与上清液分离。已除磷的上清液回流进人曝气池,而含有大量Ca3(PO4)2的污泥排出,这种含有高浓度PO3-的污泥宜用作肥料。


弗斯特利普除磷工艺已有很多应用实例。其主要特征有:


①生物除磷与化学除磷相结合,除磷效果良好,处理水中含磷量一般都低于1mg/L。


②产生的剩余污泥中含磷量比较高,约为2.1%~7.1%,污泥回流应经过除磷池。


③与完全的化学除磷法相比,所需的石灰用量比较低,一般介于21~31.8mg/[Ca(OH)2·m3]。


④活性污泥的SVI值<100mL/g,污泥易于沉淀、浓缩、脱水,污泥肥分高,丝状菌难于增殖,污泥不膨胀,且易于浓缩脱水。


⑤可以根据BOD/P的比值来灵活调节回流污泥与混凝污泥的比例。

 

⑥流程复杂,运行管理比较复杂,由于投加石灰乳,致使运行费用也有所提高,基建费用高。


⑦沉淀池I的底部可能形成缺氧状态而产生释放磷的现象,因此,应当及时排泥和回流。


2、厌氧-好氧活性污泥除磷工艺
  厌氧-好氧活性污泥组合工艺( anaerobic/oxic,An/O)是直接在生物除磷基本原理的基础上设计出来的,其工艺流程如图所示。

 

图片3.png


前段为厌氧池,城市污水和回流污泥进入该池,并借助水下推进式搅拌器的作用使其混合。回流污泥中的聚磷酸在厌氧池可吸收去除一部分有机物,同时释放出大量磷。然后混合液流人后段好氧池,污水中的有机物在其中得到氧化分解,同时聚磷菌将变本加厉,超量地摄取污水中的磷,然后通过排放高磷剩余污泥而使污水中的磷得到去除。好氧池在良好的运行状况下,剩余污泥中磷的含量在2.5%以上。


A/O生物除磷工艺的主要特点:


①工艺流程简单。


②厌氧池在前、好氧池在后,有利于抑制丝状菌的生长。混合液的SVI小于100,污泥易沉淀,不易发生污泥膨胀,并能减轻好氧池的有机负荷。


③在反应池内,水力停留时间较短,一般厌氧池的水力停留时间为1~2h,好氧池的水力停留时间为2~4h,总共为3~6h。厌氧池/好氧池的水力停留时间之比一般为1 : (2~3)。

 

④剩余活性污泥含磷率高,一般为2.5%以上,故污泥肥效好。


⑤除磷率难以进一步提高。当污水BOD浓度不高或含磷量高时,则P/BOD5比值高,剩余污泥产量低,使除磷率难以提高。


⑥当污泥在沉淀池内停留时间较长时,则聚磷菌会在厌氧状态下产生磷的释放,从而降低该工艺的除磷率,所以应注意及时排泥和使污泥回流。


A/O生物除磷工艺的缺点:


①除磷率难以进一步提高,因为微生物对磷的吸收即便是过量吸收,也是有一定限度的,特别是当进水BOD值不高或废水中含磷量较高,即P/BOD值高时,由于污泥的产量低,将更是如此。

②在沉淀池内容易产生磷的释放,特别是当污泥在沉淀池内停留时间较长时更是如此,应注意及时排泥和回流。

 

 



上一篇:高新技术企业认定由科技部变更为工信部!2024年申报高企重点关注以下几点
下一篇:全面推进生态环境分区管控
中国博彩平台 | 中国博彩平台 | 主营业务 | 成功案例 | 亚洲体育博彩平台 | 资质证书 | 亚洲体育博彩平台

CopyRight © 2011-2012  中国博彩平台  版权所有 粤ICP备12072628号
总公司地址:广东省梅州市梅县大新城府前大道42-6号  电话:0753-2589289 2563289  传真:0753-2589189
Email:mzluyuan@vip.21cn.com  邮编:514700  技术支持:客都梅州网
粤公网安备:44140302000075号